AI in Games: Achievements and Challenges

Yuandong Tian
Facebook AI Research
Game as a Vehicle of AI

- Faster than real-time
- Infinite supply of fully labeled data
- Controllable and replicable
- Low cost per sample
- Less safety and ethical concerns
- Complicated dynamics with simple rules.
Game as a Vehicle of AI

Algorithm is slow and data-inefficient

Require a lot of resources.

Abstract game to real-world

Hard to benchmark the progress
Game as a Vehicle of AI

Algorithm is slow and data-inefficient

Require a lot of resources.

Abstract game to real-world

Better Games

Hard to benchmark the progress
Game Spectrum

Good old days | 1970s | 1980s | 1990s | 2000s | 2010s
Game Spectrum

- **Good old days**
- **1970s**
- **1980s**
- **1990s**
- **2000s**
- **2010s**

Games:
- **Go**
- **Chess**
- **Poker**
Game Spectrum

- Good old days
- 1970s
- 1980s
- 1990s
- 2000s
- 2010s

- Pong (1972)
- Breakout (1978)
Game Spectrum

Super Mario Bro (1985)
Contra (1987)
Game Spectrum

Game Spectrum

1970s 1980s 1990s 2000s 2010s

Good old days

Counter Strike (2000)

The Sims 3 (2009)
Game as a Vehicle of AI

Algorithm is slow and data-inefficient

Abstract game to real-world

Require a lot of resources.

Hard to benchmark the progress

Better Algorithm/System

Better Environment
Our work

Better Algorithm/System

DarkForest Go Engine
(Yuandong Tian, Yan Zhu, ICLR16)

Doom AI
(Yuxin Wu, Yuandong Tian, ICLR17)

Better Environment

ELF: Extensive Lightweight and Flexible Framework
(Yuandong Tian et al, arXiv)
How Game AI works

Even with a super-super computer, it is not possible to search the entire space.
How Game AI works

Even with a super-super computer, it is not possible to search the entire space.

Extensive search

Evaluate

Consequence

Lufei Ruan vs. Yifan Hou (2010)

Current game situation

Black wins
White wins
Black wins
White wins
Black wins
How Game AI works

How many action do you have per step?

- Checker: a few possible moves
- Poker: a few possible moves
- Chess: 30-40 possible moves
- Go: 100-200 possible moves
- StarCraft: 50^{100} possible moves

- Alpha-beta pruning + Iterative deepening [Major Chess engine]
- Counterfactual Regret Minimization [Libratus, DeepStack]
- Monte-Carlo Tree Search + UCB exploration [Major Go engine]
- ???

Current game situation

Extensive search

Evaluate

Consequence
How Game AI works

How complicated is the game situation? How deep is the game?

- Chess
- Go
- Poker
- StarCraft

- Linear function for situation evaluation [Stockfish]
- End game database
- Random game play with simple rules [Zen, CrazyStone, DarkForest]
- Deep Value network [AlphaGo, DeepStack]

Current game situation

Extensive search

Evaluate

Consequence

Black wins
White wins
Black wins
White wins
Black wins
How to model Policy/Value function?

Non-smooth + high-dimensional
Sensitive to situations. One stone changes in Go leads to different game.

Traditional approach
• Many manual steps
• Conflicting parameters, not scalable.
• Need strong domain knowledge.

Deep Learning
• End-to-End training
 • Lots of data, less tuning.
• Minimal domain knowledge.
• Amazing performance
Case study: AlphaGo

• Computations
 • Train with many GPUs and inference with TPU.

• Policy network
 • Trained supervised from human replays.
 • Self-play network with RL.

• High quality playout/rollout policy
 • 2 microsecond per move, 24.2% accuracy. ~30%
 • Thousands of times faster than DCNN prediction.

• Value network
 • Predicts game consequence for current situation.
 • Trained on 30M self-play games.

AlphaGo

- Policy network SL (trained with human games)

<table>
<thead>
<tr>
<th>Filters</th>
<th>Symmetries</th>
<th>Features</th>
<th>Test accuracy %</th>
<th>Train accuracy %</th>
<th>Raw wins %</th>
<th>AlphaGo wins %</th>
<th>Forward time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1</td>
<td>48</td>
<td>54.6</td>
<td>57.0</td>
<td>36</td>
<td>53</td>
<td>2.8</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>48</td>
<td>55.4</td>
<td>58.0</td>
<td>50</td>
<td>50</td>
<td>4.8</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>48</td>
<td>55.9</td>
<td>59.1</td>
<td>67</td>
<td>55</td>
<td>7.1</td>
</tr>
<tr>
<td>256</td>
<td>2</td>
<td>48</td>
<td>56.5</td>
<td>59.8</td>
<td>67</td>
<td>38</td>
<td>13.9</td>
</tr>
<tr>
<td>256</td>
<td>4</td>
<td>48</td>
<td>56.9</td>
<td>60.2</td>
<td>69</td>
<td>14</td>
<td>27.6</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>48</td>
<td>57.0</td>
<td>60.4</td>
<td>69</td>
<td>5</td>
<td>55.3</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>4</td>
<td>47.6</td>
<td>51.4</td>
<td>25</td>
<td>15</td>
<td>4.8</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>12</td>
<td>54.7</td>
<td>57.1</td>
<td>30</td>
<td>34</td>
<td>4.8</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>20</td>
<td>54.7</td>
<td>57.2</td>
<td>38</td>
<td>40</td>
<td>4.8</td>
</tr>
<tr>
<td>192</td>
<td>8</td>
<td>4</td>
<td>49.2</td>
<td>53.2</td>
<td>24</td>
<td>2</td>
<td>36.8</td>
</tr>
<tr>
<td>192</td>
<td>8</td>
<td>12</td>
<td>55.7</td>
<td>58.3</td>
<td>32</td>
<td>3</td>
<td>36.8</td>
</tr>
<tr>
<td>192</td>
<td>8</td>
<td>20</td>
<td>55.8</td>
<td>58.4</td>
<td>42</td>
<td>3</td>
<td>36.8</td>
</tr>
</tbody>
</table>

AlphaGo

- Fast Rollout (2 microsecond), ~30% accuracy

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

\[a_t = \arg\max_a (Q(s_t, a) + u(s_t, a)) \]

\[u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)} \]

Tree policy

Default policy

PUCT
AlphaGo

- Value Network (trained via 30M self-played games)
- How data are collected?

AlphaGo

- Value Network (trained via 30M self-played games)

<table>
<thead>
<tr>
<th>Short name</th>
<th>Policy network</th>
<th>Value network</th>
<th>Rollouts</th>
<th>Mixing constant</th>
<th>Policy GPUs</th>
<th>Value GPUs</th>
<th>Elo rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{vp}</td>
<td>p_σ</td>
<td>v_θ</td>
<td>p_π</td>
<td>$\lambda = 0.5$</td>
<td>2</td>
<td>6</td>
<td>2890</td>
</tr>
<tr>
<td>α_{vp}</td>
<td>p_σ</td>
<td>v_θ</td>
<td>-</td>
<td>$\lambda = 0$</td>
<td>2</td>
<td>6</td>
<td>2177</td>
</tr>
<tr>
<td>α_{rp}</td>
<td>p_σ</td>
<td>-</td>
<td>p_π</td>
<td>$\lambda = 1$</td>
<td>8</td>
<td>0</td>
<td>2416</td>
</tr>
<tr>
<td>α_{rv}</td>
<td>$[p_\tau]$</td>
<td>v_θ</td>
<td>p_π</td>
<td>$\lambda = 0.5$</td>
<td>0</td>
<td>8</td>
<td>2077</td>
</tr>
<tr>
<td>α_{v}</td>
<td>$[p_\tau]$</td>
<td>v_θ</td>
<td>-</td>
<td>$\lambda = 0$</td>
<td>0</td>
<td>8</td>
<td>1655</td>
</tr>
<tr>
<td>α_{r}</td>
<td>$[p_\tau]$</td>
<td>-</td>
<td>p_π</td>
<td>$\lambda = 1$</td>
<td>0</td>
<td>0</td>
<td>1457</td>
</tr>
<tr>
<td>α_{p}</td>
<td>p_σ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1517</td>
</tr>
</tbody>
</table>

AlphaGo

Our work
Our computer Go player: DarkForest
Yuandong Tian and Yan Zhu, ICLR 2016

• DCNN as a tree policy
 • Predict next k moves (rather than next move)
 • Trained on 170k KGS dataset/80k GoGoD, 57.1% accuracy.
 • KGS 3D without search (0.1s per move)
 • Release 3 month before AlphaGo, < 1% GPUs (from Aja Huang)
Our computer Go player: DarkForest

<table>
<thead>
<tr>
<th>Name</th>
<th>Feature used for DCNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our/enemy liberties</td>
<td></td>
</tr>
<tr>
<td>Ko location</td>
<td></td>
</tr>
<tr>
<td>Our/enemy stones/empty place</td>
<td></td>
</tr>
<tr>
<td>Our/enemy stone history</td>
<td></td>
</tr>
<tr>
<td>Opponent rank</td>
<td></td>
</tr>
</tbody>
</table>

feature type: standard

winrate against Pachi 10k vs epoch
Pure DCNN

darkforest: Only use top-1 prediction, trained on KGS
darkfores1: Use top-3 prediction, trained on GoGoD
darkfores2: *darkfores1* with fine-tuning.

<table>
<thead>
<tr>
<th></th>
<th>GnuGo (level 10)</th>
<th>Pachi 10k</th>
<th>Pachi 100k</th>
<th>Fuego 10k</th>
<th>Fuego 100k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark & Storkey (2015)</td>
<td>91.0</td>
<td>-</td>
<td>-</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>Maddison et al. (2015)</td>
<td>97.2</td>
<td>47.4</td>
<td>11.0</td>
<td>23.3</td>
<td>12.5</td>
</tr>
<tr>
<td>darkforest</td>
<td>98.0 ± 1.0</td>
<td>71.5 ± 2.1</td>
<td>27.3 ± 3.0</td>
<td>84.5 ± 1.5</td>
<td>56.7 ± 2.5</td>
</tr>
<tr>
<td>darkfores1</td>
<td>99.7 ± 0.3</td>
<td>88.7 ± 2.1</td>
<td>59.0 ± 3.3</td>
<td>93.2 ± 1.5</td>
<td>78.0 ± 1.7</td>
</tr>
<tr>
<td>darkfores2</td>
<td>100 ± 0.0</td>
<td>94.3 ± 1.7</td>
<td>72.6 ± 1.9</td>
<td>98.5 ± 0.1</td>
<td>89.7 ± 2.1</td>
</tr>
</tbody>
</table>

Win rate between DCNN and open source engines.
Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.
DCNN + MCTS

darkfmcts3: Top-3/5, 75k rollouts, ~12sec/move, KGS 5d

<table>
<thead>
<tr>
<th></th>
<th>darkforest+MCTS</th>
<th>darkforest1+MCTS</th>
<th>darkforest2+MCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs pure DCNN (1000rl/top-20)</td>
<td>84.8%</td>
<td>74.0%</td>
<td>62.8%</td>
</tr>
<tr>
<td>Vs pure DCNN (1000rl/top-5)</td>
<td>89.6%</td>
<td>76.4%</td>
<td>68.4%</td>
</tr>
<tr>
<td>Vs pure DCNN (1000rl/top-3)</td>
<td>91.6%</td>
<td>89.6%</td>
<td>79.2%</td>
</tr>
<tr>
<td>Vs pure DCNN (5000rl/top-5)</td>
<td>96.8%</td>
<td>94.3%</td>
<td>94.2%</td>
</tr>
<tr>
<td>Vs Pachi 10k (pure DCNN baseline)</td>
<td>71.5%</td>
<td>88.7%</td>
<td>94.3%</td>
</tr>
<tr>
<td>Vs Pachi 10k (1000rl/top-20)</td>
<td>91.2% (+19.7%)</td>
<td>92.0% (+3.3%)</td>
<td>95.2% (+0.9%)</td>
</tr>
<tr>
<td>Vs Pachi 10k (1000rl/top-5)</td>
<td>88.4% (+16.9%)</td>
<td>94.4% (+5.7%)</td>
<td>97.6% (+3.3%)</td>
</tr>
<tr>
<td>Vs Pachi 10k (1000rl/top-3)</td>
<td>95.2% (+23.7%)</td>
<td>98.4% (+9.7%)</td>
<td>99.2% (+4.9%)</td>
</tr>
<tr>
<td>Vs Pachi 10k (5000/top-5)</td>
<td>98.4%</td>
<td>99.6%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Win rate between DCNN + MCTS and open source engines.
Our computer Go player: DarkForest

• DCNN+MCTS
 • Use top3/5 moves from DCNN, 75k rollouts.
 • Stable KGS 5d. Open source. https://github.com/facebookresearch/darkforestGo
 • 3rd place on KGS January Tournaments
 • 2nd place in 9th UEC Computer Go Competition (Not this time 😊)

DarkForest versus Koichi Kobayashi (9p)
Win Rate analysis (using DarkForest) (AlphaGo versus Lee Sedol)
First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Play the game from the raw image!
Network Structure

Simple Frame Stacking is very useful (rather than Using LSTM)
Actor-Critic Models

\[
\nabla \log \pi(a|s_t)(R_t - V(s_t))
\]

- **Update Policy network**
- **Update Value network**

\[
(R_t - V(s_t))\nabla V(s_t)
\]

Encourage actions leading to states with high-than-expected value.
Encourage value function to converge to the true cumulative rewards.
Keep the diversity of actions
Curriculum Training

From simple to complicated

FlatMap

CIGTrack1
Curriculum Training

<table>
<thead>
<tr>
<th></th>
<th>Class 0</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
<th>Class 5</th>
<th>Class 6</th>
<th>Class 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Health</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>
VizDoom AI Competition 2016 (Track1)

We won the first place!

<table>
<thead>
<tr>
<th>Rank</th>
<th>Bot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>Total frags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>56</td>
<td>62</td>
<td>n/a</td>
<td>54</td>
<td>47</td>
<td>43</td>
<td>47</td>
<td>55</td>
<td>50</td>
<td>48</td>
<td>50</td>
<td>559</td>
</tr>
<tr>
<td>2</td>
<td>Arnold</td>
<td>36</td>
<td>34</td>
<td>42</td>
<td>36</td>
<td>36</td>
<td>45</td>
<td>39</td>
<td>n/a</td>
<td>33</td>
<td>36</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>3</td>
<td>CLYDE</td>
<td>37</td>
<td>n/a</td>
<td>38</td>
<td>32</td>
<td>37</td>
<td>30</td>
<td>46</td>
<td>42</td>
<td>33</td>
<td>24</td>
<td>44</td>
<td>393</td>
</tr>
</tbody>
</table>

Videos:
https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=Qv4esGWOG7w&t=394s
Visualization of Value functions

Best 4 frames (agent is about to shoot the enemy)

Worst 4 frames (agent missed the shoot and is out of ammo)
ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick (Submitted to NIPS 2017)

https://github.com/facebookresearch/ELF

- **Extensive**
 - Any games with C++ interfaces can be incorporated.

- **Lightweight**
 - Fast. Mini-RTS (40K FPS per core)
 - Minimal resource usage (1GPU+several CPUs)

- **Flexible**
 - Environment-Actor topology
 - Parametrized game environments.
 - Choice of different RL methods.

Arxiv: https://arxiv.org/abs/1707.01067
How RL system works

Game 1 ➔ Process 1 ➔ Actor
Game 2 ➔ Process 2 ➔ Model
Game N ➔ Process N ➔ Optimizer

Consumers (Python)

Replay Buffer
ELF design

Plug-and-play; no worry about the concurrency anymore.
Possible Usage

- Game Research
 - Board game (Chess, Go, etc)
 - Real-time Strategy Game
- Complicated RL algorithms.
- Discrete/Continuous control
 - Robotics
- Dialog and Q&A System
Sample Usage
We run 1024 games concurrently.
num_games = 1024

Every time we wait for an arbitrary set of 256 games and return.
batchsize = 256

The return states contain key 's', 'r' and 'terminal'
and the reply contains key 'a', 'V' and 'pi', which is to be filled from the Python side.
Their definitions are defined in the C++ wrapper of the game.
desc = dict(
 actor = dict(
 batchsize=attrs.batchsize,
 input=dict(T=1, keys=set(['s', 'last_r', 'last_terminal'])),
 reply=dict(T=1, keys=set(['pi', 'V', 'a']))
)
)

GameContext = InitializeGame(num_games, batchsize, desc)
Main Loop

Start all game threads
GameContext.Start()

while True:
 # Wait until a batch of game states are returned.
 # Note that these game instances will be blocked.
 batch = GameContext.Wait()
 if batch.desc == "actor":
 # Apply a model to the game state. you can do forward/backward propagation here.
 output = model(batch)

 # Sample from the output to get the actions of this batch.
 reply["pi"][:] = output["pi"]
 reply["a"][:] = SampleFromDistribution(output)
 reply["V"][:] = output["V"]

 # Resume games.
 GameContext.Steps()

Stop all game threads.
GameContext.Stop()
Training

```python
desc = dict(
    actor = dict(
        batchsize=args.batchsize,
        input=dict(T=1, keys=set(['s', 'last_r', 'last_terminal'])),
        reply=dict(T=1, keys=set(['pi', 'v', 'a']))
    ),
    train = dict(
        batchsize=args.batchsize,
        input=dict(T=6, keys=set(['s', 'last_r', 'last_terminal', 'a', 'pi'])),
        reply=None
    )
)

while True:
    ...
    if batch['desc'] == 'actor':
        # Act given the current states to move the game environment forward.
        # It could be an act for a game, for its internal MCTS search, etc.
    elif batch['desc'] == 'train':
        # Train your model. All the previous actions of the games and
        # their probabilities can be made available.
    ...
```
Self-Play

desc = dict(
 actor0 = dict(
 batchsize=args.batchsize,
 input=dict(T=1, keys=set(['s', 'last_r', 'last_terminal'])),
 reply=dict(T=1, keys=set(['pi', 'v', 'a'])),
 filter=dict(id=0)
),
 actor1 = dict(
 batchsize=args.batchsize,
 input=dict(T=1, keys=set(['s', 'last_r', 'last_terminal'])),
 reply=dict(T=1, keys=set(['pi', 'v', 'a'])),
 filter=dict(id=1)
),
 train = dict(
 batchsize=args.batchsize,
 input=dict(T=6, keys=set(['s', 'last_r', 'last_terminal', 'a', 'pi'])),
 reply=None,
 filter=dict(id=0)
)
)

while True:
 ...
 if batch['desc'] == 'actor0':
 # Act for player 0
 elif batch['desc'] == 'actor1':
 # Act for player 1
 elif batch['desc'] == 'train':
 # Train your model only for player 0.
 ...
 ...
Multi-Agent

desc = {}
for i in range(num_agents):
 desc["actor%d" % i] = dict(
 batchsize=args.batchsize,
 input=dict(T=1, keys=set(['s', 'last_r', 'last_terminal'])),
 reply=dict(T=1, keys=set(['pi', 'v', 'a'])),
 filter=dict(id=i)
)

while True:
 ...
 for i in range(num_agents):
 if batch['desc'] == "actor%d" % i:
 # Act for player i
 ...

Monte-Carlo Tree Search

desc = dict(
 actor = dict(
 batchsize=args.batchsize,
 input=
 dict(T=1,
 keys=set(["s", "last_r", "last_terminal"])),
 reply=dict(T=1, keys=set(["pi", "v", "a"])),
)
)

while True:
 batch = GameContext.Wait()
 if batch["desc"] == "actor":
 # Act for player. During MCTS search, one
 # game instance could send multiple requests
 # for python side to respond.
 GameContext.Step()
Flexible Environment-Actor topology

(a) One-to-One
Vanilla A3C

(b) Many-to-One
BatchA3C, GA3C

(c) One-to-Many
Self-Play,
Monte-Carlo Tree Search
RLPytorch

• A RL platform in PyTorch
• A3C in 30 lines.
• Interfacing with dict.
Architecture Hierarchy

ELF

- Go (DarkForest)
 - Pong
 - Breakout
- ALE
- RTS Engine
 - Mini-RTS
 - Capture the Flag
 - Tower Defense

An extensive framework that can host many games.

Specific game engines.

Environments
A miniature RTS engine

Game Name	Descriptions	Avg Game Length
Mini-RTS | Gather resource and build troops to destroy opponent’s base. | 1000-6000 ticks
Capture the Flag | Capture the flag and bring it to your own base. | 1000-4000 ticks
Tower Defense | Builds defensive towers to block enemy invasion. | 1000-2000 ticks
Simulation Speed

KFPS per CPU core for Mini-RTS

<table>
<thead>
<tr>
<th>Threads</th>
<th>1 core</th>
<th>2 cores</th>
<th>4 cores</th>
<th>8 cores</th>
<th>16 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 threads</td>
<td>64</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>128 threads</td>
<td>62</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>256 threads</td>
<td>59</td>
<td>57</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>512 threads</td>
<td>56</td>
<td>54</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>1024 threads</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

KFPS per CPU core for Pong (Atari)

<table>
<thead>
<tr>
<th>Threads</th>
<th>1 core</th>
<th>2 cores</th>
<th>4 cores</th>
<th>8 cores</th>
<th>16 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 threads</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>128 threads</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>256 threads</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>512 threads</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1024 threads</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Platform Specifications

<table>
<thead>
<tr>
<th>Platform</th>
<th>ALE</th>
<th>RLE</th>
<th>Universe</th>
<th>Malmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPS</td>
<td>6000</td>
<td>530</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Platform</td>
<td>DeepMind Lab</td>
<td>VizDoom</td>
<td>TorchCraft</td>
<td>Mini-RTS</td>
</tr>
<tr>
<td>FPS</td>
<td>287(C) / 866(G)</td>
<td>7,000</td>
<td>2,000 (Frameskip=50)</td>
<td>40,000</td>
</tr>
</tbody>
</table>

6CPU + 1GPU
Training AI

Game visualization

Using Internal Game data and A3C.
Reward is only available once the game is over.
MiniRTS

- **Building that can build workers and collect resources.**
- **Resource unit that contains 1000 minerals.**
- **Building that can build melee attacker and range attacker.**
- **Worker who can build barracks and gather resource.**
 - Low speed in movement and low attack damage.
- **Tank with high HP, medium movement speed, short attack range, high attack damage.**
- **Tank with low HP, high movement speed, long attack range and medium attack damage.**
Training AI

9 discrete actions.

<table>
<thead>
<tr>
<th>No.</th>
<th>Action name</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IDLE</td>
<td>Do nothing</td>
</tr>
<tr>
<td>2</td>
<td>BUILD WORKER</td>
<td>If the base is idle, build a worker</td>
</tr>
<tr>
<td>3</td>
<td>BUILD BARRACK</td>
<td>Move a worker (gathering or idle) to an empty place and build a barrack.</td>
</tr>
<tr>
<td>4</td>
<td>BUILD MELEE ATTACKER</td>
<td>If we have an idle barrack, build an melee attacker.</td>
</tr>
<tr>
<td>5</td>
<td>BUILD RANGE ATTACKER</td>
<td>If we have an idle barrack, build a range attacker.</td>
</tr>
<tr>
<td>6</td>
<td>HIT AND RUN</td>
<td>If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.</td>
</tr>
<tr>
<td>7</td>
<td>ATTACK</td>
<td>All melee and range attackers attack the opponent’s base.</td>
</tr>
<tr>
<td>8</td>
<td>ATTACK IN RANGE</td>
<td>All melee and range attackers attack enemies in sight.</td>
</tr>
<tr>
<td>9</td>
<td>ALL DEFEND</td>
<td>All troops attack enemy troops near the base and resource.</td>
</tr>
</tbody>
</table>
Win rate against rule-based AI

Frame skip (how often AI makes decisions)

<table>
<thead>
<tr>
<th>Frame skip</th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>68.4(±4.3)</td>
<td>63.6(±7.9)</td>
</tr>
<tr>
<td>20</td>
<td>61.4(±5.8)</td>
<td>55.4(±4.7)</td>
</tr>
<tr>
<td>10</td>
<td>52.8(±2.4)</td>
<td>51.1(±5.0)</td>
</tr>
</tbody>
</table>

Network Architecture

<table>
<thead>
<tr>
<th></th>
<th>SIMPLE (median)</th>
<th>SIMPLE (mean/std)</th>
<th>HIT_AND_RUN (median)</th>
<th>HIT_AND_RUN (mean/std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReLU</td>
<td>52.8</td>
<td>54.7(±4.2)</td>
<td>60.4</td>
<td>57.0(±6.8)</td>
</tr>
<tr>
<td>Leaky ReLU</td>
<td>59.8</td>
<td>61.0(±2.6)</td>
<td>60.2</td>
<td>60.3(±3.3)</td>
</tr>
<tr>
<td>ReLU + BN</td>
<td>61.0</td>
<td>64.4(±7.4)</td>
<td>55.6</td>
<td>57.5(±6.8)</td>
</tr>
<tr>
<td>Leaky ReLU + BN</td>
<td>72.2</td>
<td>68.4(±4.3)</td>
<td>65.5</td>
<td>63.6(±7.9)</td>
</tr>
</tbody>
</table>
Effect of T-steps

Large T is better.
Transfer Learning and Curriculum Training

<table>
<thead>
<tr>
<th></th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(50%SIMPLE+50%H&R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMPLE</td>
<td>68.4 (±4.3)</td>
<td>26.6 (±7.6)</td>
<td>47.5 (±5.1)</td>
</tr>
<tr>
<td>HIT_AND_RUN</td>
<td>34.6 (±13.1)</td>
<td>63.6 (±7.9)</td>
<td>49.1 (±10.5)</td>
</tr>
<tr>
<td>Combined (No curriculum)</td>
<td>49.4 (±10.0)</td>
<td>46.0 (±15.3)</td>
<td>47.7 (±11.0)</td>
</tr>
<tr>
<td>Combined</td>
<td>51.8 (±10.6)</td>
<td>54.7 (±11.2)</td>
<td>53.2 (±8.5)</td>
</tr>
</tbody>
</table>

Highest win rate against AI_SIMPLE: 80%

<table>
<thead>
<tr>
<th></th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
<th>CAPTURE_THE_FLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without curriculum training</td>
<td>66.0 (±2.4)</td>
<td>54.4 (±15.9)</td>
<td>54.2 (±20.0)</td>
</tr>
<tr>
<td>With curriculum training</td>
<td>68.4 (±4.3)</td>
<td>63.6 (±7.9)</td>
<td>59.9 (±7.4)</td>
</tr>
</tbody>
</table>
Monte Carlo Tree Search

<table>
<thead>
<tr>
<th></th>
<th>MiniRTS (AI_SIMPLE)</th>
<th>MiniRTS (Hit_and_Run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>24.2 (±3.9)</td>
<td>25.9 (±0.6)</td>
</tr>
<tr>
<td>MCTS</td>
<td>73.2 (±0.6)</td>
<td>62.7 (±2.0)</td>
</tr>
</tbody>
</table>

MCTS evaluation is repeated on 1000 games, using 800 rollouts. MCTS uses complete information and perfect dynamics.
Future Work

• Richer game scenarios.
 • Multiple bases (Expand? Rush? Defending?)
 • More complicated units.

• More Realistic action space
 • Assign one action per unit

• Model-based Reinforcement Learning
 • MCTS with perfect information and perfect dynamics also achieves ~70% winrate

• Self-Play (Trained AI versus Trained AI)
Thanks!