ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian Qucheng Gong Wenling Shang Yuxin Wu Larry Zitnick

Facebook AI Research
Reinforcement Learning: Ideal and Reality

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]
Reinforcement Learning: Ideal and Reality

Design Choices:

CPU, GPU?
Simulation, Replays
Concurrency

[State S_t] \rightarrow [Agent] \rightarrow [Reward R_t] \rightarrow [Action a_t] \rightarrow [Environment] \rightarrow [State S_{t+1}]

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]
ELF: A simple for-loop

```python
while True:
    batched_states = GameContext.Wait()
    replies = model(batched_states)
    GameContext.Steps(replies)
```
ELF Characteristics

Extensive
Any games with C++ interfaces can be incorporated.

Lightweight
Fast. Mini-RTS (40K FPS per core)
Minimal resource usage (1GPU+several CPUs)
Fast training (half a day for a RTS game)

Flexible
Environment-Actor topology
Parametrized game environments.
Choice of different RL methods.
Extensibility

Go

ALE

Pong

Breakout

Mini-RTS

RTS Engine

Capture the Flag

Tower Defense
Lightweight

KFPS per CPU core for Pong (Atari)

- 1 core
- 2 cores
- 4 cores
- 8 cores
- 16 cores

OpenAI Gym
Lightweight

KFPS per CPU core for Pong (Atari)
Flexibility

while True:
 batched = GameContext.Wait()
 replies = model(batched)
 GameContext.Steps(replies)
Flexibility

```python
while True:
    ...
    if batch["type"] == "actor":
        ...
    elif batch["type"] == "train":
        ...
```

Training
Flexibility

while True:
 ...
 if batch["type"] == "actor0":
 ...
 elif batch["type"] == "actor1":
 ...
 ...
Flexibility

while True:
 ...
 for i in range(n):
 if batch["type"] == "actor%d" % i:
 ...

Multi-agent
Flexibility

Monte-Carlo Tree Search

while True:
 batched = GameContext.Wait()
 replies = model(batched)
 GameContext.Steps(replies)
ELF design

Game 1

History buffer

Producer (Games in C++)
ELF design

Producer (Games in C++)
ELF design

Producer (Games in C++)

Game 1

Game 2

Game N

History buffer

History buffer

History buffer

Collector
ELF design

Producer (Games in C++)

Game 1

History buffer

Game 2

History buffer

Game N

History buffer

Collector

Batch with History info

Distributor

Reply

Consumers (Python)
ELF design

Producer (Games in C++)

Game 1
History buffer
Collector
Batch with History info
Distributor
Reply
Actor
Model
Consumers (Python)

Game 2
History buffer

Game N
History buffer
ELF design

Producer (Games in C++)

Game 1
- History buffer

Game 2
- History buffer
- ...
- ...

Game N
- History buffer

Batch with History info

Distributor

A batch for actor

Actor

Model

Optimizer

A batch for optimizer

Consumers (Python)
ELF design

Producer (Games in C++)

Game 1
- History buffer

Game 2
- History buffer

Game N
- History buffer

Collector

Batch with History info

Distributor

Reply

Actor

Model

Optimizer

Consumers (Python)

A batch for actor

A batch for optimizer

Process
Gorilla

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]
Asynchronized Advantageous Actor-Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016]
GA3C / BatchA2C

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor–Critic on a GPU, ICLR 2017]
ELF: A unified framework

Off-policy training
Deep Q-learning

One-to-One
Vanilla A3C

Many-to-One
BatchA2C, GA3C
ELF: A unified framework

Off-policy training
Deep Q-learning

One-to-One
Vanilla A3C

Many-to-One
BatchA3C, GA3C

One-to-Many
Self-Play,
Monte-Carlo Tree Search
Part II. MiniRTS Training
MiniRTS: A miniature RTS engine

<table>
<thead>
<tr>
<th>Platform</th>
<th>Frame per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>6,000</td>
</tr>
<tr>
<td>Open AI Universe</td>
<td>60</td>
</tr>
<tr>
<td>Malmo</td>
<td>120</td>
</tr>
<tr>
<td>DeepMind Lab</td>
<td>287*/866**</td>
</tr>
<tr>
<td>VizDoom</td>
<td>7,000</td>
</tr>
<tr>
<td>TorchCraft</td>
<td>2,000</td>
</tr>
<tr>
<td>MiniRTS</td>
<td>40,000</td>
</tr>
</tbody>
</table>

* Using CPU only ** Using CPUs and GPU
MiniRTS

Base
Build workers and collect resources.

Resource
Contains 1000 minerals.

Barracks
Build melee attacker and range attacker.

Worker
Build barracks and gather resource.
Low speed in movement and low attack damage.

Melee Tank
High HP, medium movement speed, short attack range, high attack damage.

Range Tank
Low HP, high movement speed, long attack range and medium attack damage.
Training AI

Using Internal Game data and Actor-Critic Models. Reward is only available once the game is over.
9 Discrete Strategic Actions

<table>
<thead>
<tr>
<th>No.</th>
<th>Action name</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IDLE</td>
<td>Do nothing</td>
</tr>
<tr>
<td>2</td>
<td>BUILD WORKER</td>
<td>If the base is idle, build a worker</td>
</tr>
<tr>
<td>3</td>
<td>BUILD BARRACK</td>
<td>Move a worker (gathering or idle) to an empty place and build a barrack.</td>
</tr>
<tr>
<td>4</td>
<td>BUILD MELEE ATTACKER</td>
<td>If we have an idle barrack, build an melee attacker.</td>
</tr>
<tr>
<td>5</td>
<td>BUILD RANGE ATTACKER</td>
<td>If we have an idle barrack, build a range attacker.</td>
</tr>
<tr>
<td>6</td>
<td>HIT AND RUN</td>
<td>If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.</td>
</tr>
<tr>
<td>7</td>
<td>ATTACK</td>
<td>All melee and range attackers attack the opponent’s base.</td>
</tr>
<tr>
<td>8</td>
<td>ATTACK IN RANGE</td>
<td>All melee and range attackers attack enemies in sight.</td>
</tr>
<tr>
<td>9</td>
<td>ALL DEFEND</td>
<td>All troops attack enemy troops near the base and resource.</td>
</tr>
</tbody>
</table>
Rule-based AIs

AI_SIMPLE
Build 5 tanks and attack

AI_HIT_AND_RUN
Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.
Trained AI
Win rate against rule-based AI

Frame skip (how often AI makes decisions)

<table>
<thead>
<tr>
<th>Opponent Frame skip</th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>68.4(±4.3)</td>
<td>63.6(±7.9)</td>
</tr>
<tr>
<td>20</td>
<td>61.4(±5.8)</td>
<td>55.4(±4.7)</td>
</tr>
<tr>
<td>10</td>
<td>52.8(±2.4)</td>
<td>51.1(±5.0)</td>
</tr>
</tbody>
</table>

The frameskip of learned AI is always 50
Win rate against rule-based AI

Network Architecture

<table>
<thead>
<tr>
<th>Win Rate (10K games)</th>
<th>SIMPLE (median)</th>
<th>SIMPLE (mean/std)</th>
<th>HIT_AND_RUN (median)</th>
<th>HIT_AND_RUN (mean/std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReLU</td>
<td>52.8</td>
<td>54.7(±4.2)</td>
<td>60.4</td>
<td>57.0(±6.8)</td>
</tr>
<tr>
<td>Leaky ReLU</td>
<td>59.8</td>
<td>61.0(±2.6)</td>
<td>60.2</td>
<td>60.3(±3.3)</td>
</tr>
<tr>
<td>ReLU + BN</td>
<td>61.0</td>
<td>64.4(±7.4)</td>
<td>55.6</td>
<td>57.5(±6.8)</td>
</tr>
<tr>
<td>Leaky ReLU + BN</td>
<td>72.2</td>
<td>68.4(±4.3)</td>
<td>65.5</td>
<td>63.6(±7.9)</td>
</tr>
</tbody>
</table>
Effect of Multi-step Training
Curriculum Training

<table>
<thead>
<tr>
<th>Win Rate</th>
<th>Without curriculum training</th>
<th>With curriculum training</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI_SIMPLE</td>
<td>66.0 (±2.4)</td>
<td>68.4 (±4.3)</td>
</tr>
<tr>
<td>AI_HIT_AND_RUN</td>
<td>54.4 (±15.9)</td>
<td>63.6 (±7.9)</td>
</tr>
</tbody>
</table>

First k decisions made by AI_SIMPLE then made by trained AI

\[k \sim \text{Uniform}[0, K] \]

\[K \propto \beta^{-\#\text{game_played}} \]
Transfer Learning

<table>
<thead>
<tr>
<th>Win Rate</th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
<th>Combined (50%SIMPLE+50% H&R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLE</td>
<td>68.4 (±4.3)</td>
<td>26.6 (±7.6)</td>
<td>47.5 (±5.1)</td>
</tr>
<tr>
<td>HIT_AND_RUN</td>
<td>34.6 (±13.1)</td>
<td>63.6 (±7.9)</td>
<td>49.1 (±10.5)</td>
</tr>
<tr>
<td>Combined</td>
<td>51.8 (±10.6)</td>
<td>54.7 (±11.2)</td>
<td>53.2 (±8.5)</td>
</tr>
</tbody>
</table>
Monte Carlo Tree Search

<table>
<thead>
<tr>
<th>Win Rate</th>
<th>AI_SIMPLE</th>
<th>AI_HIT_AND_RUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>24.2 (±3.9)</td>
<td>25.9 (±0.6)</td>
</tr>
<tr>
<td>MCTS*</td>
<td>73.2 (±0.6)</td>
<td>62.7 (±2.0)</td>
</tr>
<tr>
<td>Trained AI</td>
<td>68.4 (±4.3)</td>
<td>63.6 (±7.9)</td>
</tr>
</tbody>
</table>

* repeat on 1000 games, each using 800 rollouts.

MCTS uses complete information and perfect dynamics
Ongoing Work

• One framework for different games.
 • DarkForest remastered: https://github.com/facebookresearch/ELF/tree/master/go

• Richer game scenarios for MiniRTS.
 • LUA scripting support
 • Multiple bases (Expand? Rush? Defending?)
 • More complicated units.

• Realistic action space
 • One command per unit

• Model-based Reinforcement Learning

• Self-Play (Trained AI versus Trained AI)
Open Source

https://github.com/facebookresearch/ELF
LUA Interface for MiniRTS

• Easy to change game dynamics
 • Don’t need to touch C++.
• Comparable speed to C++
 • 1.5x slower than compiled code.

```lua
local g_funcs = { }
function g_funcs.attack(env, cmd)
    local target = env:unit(cmd.target)
    local u = env:self()
    if target:isdead() or not u:can_see(target) then
        -- c_print("Task finished!")
        return global.CMD_COMPLETE
    end
    local att_r = u:att_r()
    local in_range = env:dist_sqr(target:p()) <= att_r * att_r
    if u:cd_expired(global.CD_ATTACK) and in_range then
        -- print("Attacking ...")
        -- Then we need to attack.
        if att_r <= 1.0 then
            env:send_cmd_melee_attack(cmd.target, u:att())
        else
            env:send_cmd_emit_bullet(cmd.target, u:att())
        end
        env:cd_start(global.CD_ATTACK)
    else
        if not in_range then
            -- print("Moving towards target ...")
            env:move_towards(target)
        end
        end
    -- print("Done with Attacking ...")
end
```
A3C

def update(self, batch):
 ''' Actor critic model '''
 R = deepcopy(batch["V"])[T - 1])
 batchsize = R.size(0)
 R.resize_(batchsize, 1)

 for t in range(T - 2, -1, -1):
 # Forward pass
 curr = self.model_interface.forward("model", batch.hist(t))

 # Compute the reward.
 R = R * self.args.discount + batch["r"][t]
 # If we see any terminal signal, do not backprop
 for i, terminal in enumerate(batch["terminal"][t]):
 if terminal: R[t][i] = curr["V"].data[i]

 # We need to set it beforehand.
 self.policy_gradient_weights = R - curr["V"].data

 # Compute policy gradient error:
 errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
 # Compute critic error
 value_err = self.value_loss(curr["V"], Variable(R))

 overall_err = value_err + errs["policy_err"]
 overall_err += errs["entropy_err"] * self.args.entropy_ratio
 overall_err.backward()
Questions?

Tonight Poster: #96

https://github.com/facebookresearch/ELF